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Recent atomic force microscope �AFM� nanoindentation experiments measuring mechanical response of the
protein shells of viruses have provided a quantitative description of their strength and elasticity. To better
understand and interpret these measurements, and to elucidate the underlying mechanisms, this paper adopts a
course-grained modeling approach within the framework of three-dimensional nonlinear continuum elasticity.
Homogeneous, isotropic, elastic, thick-shell models are proposed for two capsids: the spherical cowpea chlo-
rotic mottle virus �CCMV�, and the ellipsocylindrical bacteriophage �29. As analyzed by the finite-element
method, these models enable parametric characterization of the effects of AFM tip geometry, capsid dimen-
sions, and capsid constitutive descriptions. The generally nonlinear force response of capsids to indentation is
shown to be insensitive to constitutive particulars, and greatly influenced by geometric and kinematic details.
Nonlinear stiffening and softening of the force response is dependent on the AFM tip dimensions and shell
thickness. Fits of the models capture the roughly linear behavior observed in experimental measurements and
result in estimates of Young’s moduli of �280–360 MPa for CCMV and �4.5 GPa for �29.
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I. INTRODUCTION

As confirmed by a scan of the Research Collaboratory for
Structural Bioinformatics �RCSB� Protein Data Bank �1�, the
structural biology techniques of x-ray crystallography and
cryo-electron microscopy �cryo-EM� have enabled determi-
nation of the shape and structure of a multitude of macro-
molecules, in many cases locating individual atoms with
resolution up to a few angstroms. In particular, these meth-
ods have been effective in elucidating the structures of the
protein shells �capsids� of many viruses �2�. However, de-
spite �or perhaps because of� the wealth of detailed structural
information made available by these methods, it remains a
significant challenge to understand and predict the overall
structural mechanics of capsids based on models of funda-
mental atomic interactions. Global deformations of capsids,
such as those implicated in viral maturation �3� and infection
processes �4,5�, can entail large-scale-coordinated motions in
which all atoms are involved. The shear number of atomic
degrees of freedom in a viral shell makes molecular dynam-
ics simulation of such processes unreasonable. In order to
understand coarser-scale capsid mechanics, experimental and
theoretical approaches are needed that describe the capsid
structure in reduced terms.

Atomic force microscopy �AFM� is such a tool, able to
explicate virus mechanics by measuring the force response
due to indentation of a capsid. Recent AFM studies probing
the mechanics of viral capsids �6,7� have shown that they can
be strong and yet highly elastic, even under significantly
large deformations. A particularly interesting hallmark of
these experiments is the linearity of force-indentation re-
sponse. Prompted by this observation, Ivanovska et al. �6�
interpreted AFM experiments on the �29 bacteriophage by
building theoretical models based on �linearized� small-
strain, thin-shell, continuum elasticity, thus enabling quanti-

tative estimation of three-dimensional �3D� elastic constants
�e.g., the Young’s modulus� for the capsid. More recent ex-
periments have measured a similarly linear force-indentation
response for a completely different virus, cowpea chlorotic
mottle virus �CCMV� �7�, apparently affirming the appropri-
ateness of linearized elasticity modeling. However, though
linear-response theory does offer a description of these AFM
experiments, it is not at all clear why a linear large-
deformation response is observed in the first place. Indeed, in
traditional solid mechanics, large deformations are fre-
quently accompanied by a nonlinear force response, even
when the material is perfectly elastic. The nonlinear elastic-
ity of rubber materials is perhaps the most obvious example
�8�.

In this paper the a priori assumption of linearity is aban-
doned, and more general elastic continuum capsid models
are developed and studied. Capsids are modeled in the con-
text of finite-deformation hyperelasticity, wherein strains are
not assumed to be small, such that the nonlinear effects of
large displacements, rotations, and strains are considered.
Previous linearized elasticity models of capsid indentation
�6,9� have also relied on reduced thin-shell theory �10,11�,
under which the 3D equations of elasticity are reduced to
two dimensions, facilitating analytical solutions for simple
loadings and geometries. However, thin-shell theory, as its
name implies, is applicable only for shell structures with a
thickness that is much smaller �by at least a few orders of
magnitude� than the overall structural dimensions. In particu-
lar, thin-shell theory precludes transverse shear deformation,
which, though negligible for thin shells, is an important fac-
tor for thick shells. The nominal thickness of CCMV is just
over 10% of its outer diameter, likely putting it outside the
range of applicability for thin-shell analysis. Two options
remain for analysis of a thick shell like the CCMV capsid.
The first is to resort to shell theories which allow for shear
deformation �10�, and the second is to work within the gen-
eral framework of 3D continuum elasticity. In the present
work, focus is on the latter, more general approach, and its
differences with the former are briefly examined. Both of*Electronic address: klug@ucla.edu
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these strategies are difficult to employ in a closed-form ana-
lytical manner, and typically for scenarios involving large
deformations and complex geometries or boundary condi-
tions they require numerical solutions. The capsid indenta-
tion experiment is one such scenario, involving both large
strains and geometric nonlinearities due to contact between
the capsid and the substrate or AFM. In this work numerical
solution is performed by the finite-element method �12�, the
most popular and robust analysis technique for elasticity
problems in engineering. Calculations are carried out using
ABAQUS �13�, a commercially available nonlinear finite-
element analysis software package.

Finite element simulations of AFM nanoindentation ex-
periments provide a means for systematic study of the effects
of model parameters on computed force-indentation response
curves, thereby enabling validation and comparison to ex-
periments. The inputs to the continuum elasticity models are
of constitutive and geometric natures. To understand the in-
fluence of constitutive modeling choices, the classical linear,
Hookean stress-strain law is compared with two nonlinear
hyperelastic constitutive laws. To illustrate the consequential
geometrically nonlinear effects of large indentations, com-
parison is made of the Hookean reponse coupled with both
linearized �small-strain� kinematics and nonliner finite-
deformation �large-strain� kinematics. Also, the dependence
of force-indentation curves on capsid dimensions and AFM-
tip loading geometry is demonstrated. The results show that
the nonlinear contact interaction of the AFM tip with the
capsid has important qualitative and quantitative influence on
the structural response.

The experimental studies �6,7� that have motivated this
work measured the nanoindentation response of two viruses:
CCMV and bacteriophage �29. CCMV is a roughly spheri-
cal plant virus of about 28 nm in diameter. Its protein capsid,
which protects a single-stranded RNA genome, is assembled
from 180 identical protein subunits arranged into a truncated
icosahedron with a triangulation number T=3, according to
the Caspar-Klug classification scheme for icosahedral viruses
�14�. �29 is a bacteriophage �i.e., a virus that attacks bacte-
ria� with a roughly ellipsocylindrical capsid that protects a
double-stranded DNA genome. The �29 capsid is comprised
of 235 protein subunits, arranged into a prolate shell with a
center cylindrical region and two icosahedral end caps �15�.

The following section describes the mechanics framework
and the finite-element formulation for the models, and pre-
sents the idealized structural models of CCMV and �29.
Next, results are presented of simulations of nanoinentation
of CCMV along with some estimates of effective elastic
moduli. Because its more symmetric shape makes it a sim-
pler candidate for modeling, CCMV is focused on as the
subject of a series of parametric studies on model param-
eters. First the sensitivity of the model to the effects of large
indentations and changes in constitutive laws is assessed. It
is demonstrated that the kinematic nonlinearities brought
about by large strains significantly affect the resulting force-
indentation response. In particular it is shown that, because
of contact nonlinearities, the classical linearized small-strain
formulation does not produce a linear force-indentation
curve. However, when large strains are properly accounted
for kinematically, simulations predict a nearly linear overall

force-indentation response, with no significant differences
observed for three considerably different constitutive mod-
els. Second, the influence of the AFM tip geometry and shell
thickness on the overall response is examined. These geo-
metric properties are shown to produce both stiffening and
softening nonlinearities in the structural force response. For
comparison purposes, the computed indentation response of
�29 is shown, and an estimate of its effective elastic modu-
lus is made.

II. MODELS AND METHODS

A. Modeling capsid geometry

The native atomic structure of CCMV was determined to
within 3.2 Å by Speir et al. �4� using x-ray crystallography
and cryo-EM. In this study, the capsid was shown to be a
T=3 icosahedral shell, composed of protein subunits orga-
nized with regions of fivefold symmetry �pentamers� and six-
fold symmetry �hexamers� that form protrusions from the
capsid surface, making the thickness of the shell highly non-
uniform. For the outer radius of CCMV, �4� measured a
maximum value of Rmax

out =14.2 nm and a minimum value of
Rmin

out =12.0 nm. The average outer radius is Rav
out=13.2 nm

�16�. For the inner surface of the capsid they specify a mini-
mum radius of Rmin

in =9.5 nm and an average radius of Rav
in

=10.4 nm. Here CCMV is idealized as a uniformly thick
spherical shell as shown in Fig. 1�a�. It is not immediately
clear what uniform dimensions for the idealized shell would
best represent the highly nonuniform physical dimensions of
the actual capsid. As a starting point, average radius values
are adopted for the inner and outer surfaces, which from �4�
are Rin=10.4 nm and Rout=13.2 nm, such that the idealized
thickness is t=2.8 nm. These representative model dimen-
sions for CCMV are slightly different from values in another
recent study �7�; the values were revised after a more me-
ticulous evaluation of the data available on the CCMV di-
mensions from �4,16�. Given the arbitrariness of adopting
average dimensions for the idealized model, a parametric
study is done to examine the influence of these choices on
the model results.

The second virus of the study, bacteriophage �29, has a
less symmetric but more uniform structure, as determined by
Tao et al. �15� using cryo-EM. Its capsid is formed by two

FIG. 1. Schematic of idealized capsid models. Dimensions are
averaged from the results of structural studies of CCMV �4� and
�29 �15�.
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T=3 icosahedral caps connected by a cylindrical region of
hexamers. The average thickness of the capsid is 1.6 nm.
The two outer diameters are known to be 54 nm from the
apex of one end cap to another and 42 nm across the cylin-
drical region �15�. The �29 capsid is modeled by a center
cylindrical region 24 nm in length connecting two ellipsoidal
end caps. Ellipsoidal end caps �rather than spherical� are cho-
sen as there is a disparity between the measured dimension
from the center to the cylindrical section �21 nm� and from
the center to the apex of the endcap �15 nm�. If the end caps
were made spherical, and the length of the cylindrical region
chosen to match the reported 24 nm value, then the apex to
apex diameter of the model would be much larger than the
reported value. Model dimensions are summarized in the
schematic diagrams in Fig. 1.

B. Theoretical background and computational methodology

Following the standard definitions of finite-deformation
continuum mechanics �17,18�, the deformation of a body is
described by the one-to-one deformation mapping � :B0
→R3, which maps material point at position X�B0 in the
reference configuration of the body to point x=��X� in the
deformed configuration of the body. The deformation gradi-
ent tensor is denoted F=��, the right Cauchy-Green defor-
mation tensor C=FTF and the Green strain tensor E= 1

2 �C
−1�. The volume change ratio of current to reference volume
is given by the determinant of the deformation gradient, J
=dv /dV=det F. Also, in the context of compressible large-
strain elasticity, it is helpful to introduce isochoric �volume-
preserving� deformation tensors F=J−1/3F and C=FTF.

When displacements and strains are vanishingly small, it
is convenient to introduce the displacement vector u=�−X
and its gradient H=�u=F−1. The Green’s strain is related
to the displacement gradient as E= 1

2 �H+HT+HTH�. In the
small-H limit, neglecting quadratic terms yields the linear-
ized infinitesimal or small-strain tensor �� 1

2 �H+HT��E.
The linearized strain � in general provides a poor kinematic
description when displacement gradients are large, primarily
because the dropping of the quadratic terms results in sensi-
tivity to superposed local rigid body rotations. One alterna-
tive, physically motivated, measure of strain that does not
suffer spurious stretches under finite rotations is the logarith-
mic strain �L=ln V, where V=�FFT is the spatial stretch
tensor, resulting from the left polar decomposition of the
deformation gradient tensor �19,20�. The logarithmic strain
provides a measure of the local shape change of the defor-
mation that is insensitive to rigid body rotations incurred
during large deformations, and for small deformations it lin-
earizes consistently with the small strain.

Constitutive theory for hyperelastic materials postulates
the existence of a strain energy density function W, which
gives the stored elastic energy per unit reference volume at
every material point in the body. The stress response of a
hyperelastic material is then given in terms of the first Piola-
Kirchhoff stress tensor P=�W /�F or the second Piola-
Kirchhoff stress tensor S=�W /�E. These stress tensors are
related to the Cauchy �true� stress tensor � as P=J�F−T and
S=JF−1�F−T. For vanishingly small strains, all three stress

tensors become the same to linear order in H=0.
Mechanical equilibrium can be enforced by minimizaton

of the total mechanical energy �including work of contact
forces�. The finite-element method approximates the nonlin-
ear elasticity problem by interpolating the deformation map-
ping among the deformed positions of the vertices �nodes� of
a polyhedral mesh, and solving for the nodal positions which
best minimize energy. The finite-element equilibrium equa-
tions are nonlinear in the unknown deformed nodal positions
xa because of the nonlinearities in the constitutive expres-
sions for stress and �for the present context� in the contact
conditions which define external forces.

C. Constitutive laws

In this work, three particular isotropic material models are
employed to describe capsid stress-strain response: the linear
Hookean model and two hyperelastic models, neo-Hookean
and Mooney-Rivlin. The classical Hookean model of small-
strain linear elasticity specifies the Cauchy stress compo-
nents as linear functions of the components of the linearized
strain tensor

� = �0�tr ��1 + 2�0� . �1�

It is important to note that linear elasticity theory involves
two independent linearizations: the first is kinematic, relating
strains linearly to displacements, and the second is constitu-
tive, relating stresses linearly to strains. As a result, the
small-strain Hookean model generally does not deal properly
with large deformations, especially in cases where finite ro-
tations of the material cause it to produce spurious stresses.
Substitution of the logarithmic strain

� = �0�tr �L�1 + 2�0�L �2�

can to some extent ameliorate these issues, providing a geo-
metrically nonlinear extension of the Hookean model. For
clarity, the label linear Hookean will henceforth be used for
the completely linearized model of Eq. �1�, and nonlinear
Hookean for the geometrically nonlinear model of Eq. �2�.

Hyperelastic material models, which, consistent with the
thermodynamic definition of reversibility, specify a strain en-
ergy density depending on C, are also invariant upon super-
posed rigid rotations, and are generally the most appropriate
choice for large-deformation situations �17,18�. For isotropic
compressible hyperelastic materials it can be convenient to
define the strain energy function in a decoupled representa-
tion as

W = Wvol�J� + Wiso�Ī1, Ī2� ,

where Wvol�J� describes the volumetric response and

Wiso�Ī1 . Ī2� describes the isochoric response in terms of the
first two principal invariants of C. The simplest example of
such a constitutive law, the neo-Hookean model, defines the
isochoric response to be simply linear in the first invariant:

Wiso =
�0

2
�Ī1 − 3� . �3�

Emerging from the statistical mechanics of a Gaussian chain
�21�, the neo-Hookean form has some justification as a
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highly idealized constitutive model for polymers and pro-
teins. Linearization of the neo-Hookean stress response for
small strains yields �0 as the initial shear modulus. The
Mooney-Rivlin model can be thought of as an extension of
the neo-Hookean to include the lowest-order dependence on
the second invariant:

Wiso = C10�Ī1 − 3� + C01�Ī2 − 3� . �4�

Linearization of the Mooney-Rivlin model for small strains
gives an initial shear modulus of �0=2�C10+C01�. For both
neo-Hookean and Mooney-Rivlin models, we choose a
simple quadratic volumetric response Wvol=k0�J−1�2 /2,
such that linearization renders k0=�0+ 2

3�0 as the initial bulk
modulus, consistent with initial Lamé constants �0 and �0.

D. Simulation of capsid nanoindentation

AFM nanoindentation of capsids is simulated by the
finite-element method, using the commercially available
package ABAQUS �13�. The models described above are
meshed with finite elements, and the capsid meshes are com-
pressed between substrate and AFM tip. The substrate and
AFM tip are both modeled as rigid. The substrate has the
geometry of a flat plate, whereas the AFM tip is given a
hemispherical shape with a nominal radius of about 14 nm,
consistent with geometry of the tips used in the experiments
of �6,7�. Though the spherical CCMV model obviously has
no intrinsic orientation, the same is not true for the ellipso-
cylindrical �29. Again motivated by the experiments of �6�,
the �29 model is oriented such that compression is simulated
along the short axis of the capsid. Noting the presence of
symmetries in the capsid and loading geometries, it seems
reasonable to expect deformation to obey the same symme-
tries. Hence only one-quarter of each capsid is meshed, and
symmetry boundary conditions along the boundaries are en-
forced. Meshed model assemblies are shown in Fig. 2.

Contact of the rigid tip and substrate with the deformable
capsid is modeled as frictionless, such that Lagrange-
multiplier contact forces are introduced normal to the contact
interfaces, in order to prevent interpenetration. The progres-
sive compression of the capsid is achieved by an incremen-
tal, quasistatic, displacement-controlled process, where each

increment involves a small upward displacement of the rigid
substrate followed by iterative solution of the nonlinear
finite-element equilibrium equations consistent with contact
constraints. For each incremental displacement of the sub-
strate, the total contact force at each contact interface is com-
puted, allowing construction of a force-deflection curve for
the indentation process.

III. NANOINDENTATION OF CCMV

As described in the previous section, parameters defining
the spherical model of CCMV are of two types: geometric
and constitutive. The simulations described here are designed
to separately and quantitatively understand the effects of
these parameters on capsid indentation. The influence of
capsid dimensions is considered by fixing the radius of the
midsurface of the shell �equidistant from the inner and outer
surfaces� at R=11.8 nm, while varying the thickness from 1
to 5 nm �roughly reflecting the range of physical thickness
over the actual capsid shell�. A range of AFM tip geometries
is also considered, from a rather sharp tip of radius 3.5 nm to
a completely flat tip �i.e., infinite radius�.

The three consititutive theories described above—
Hookean �linear and nonlinear�, neo-Hookean, and Mooney-
Rivlin—are parametrized in a manner such that for small
strains they linearize consistently with initial Lamé constants
related to initial Poisson ratio � and initial Young’s modulus
E by

�0 =
�E

�1 − 2���1 + ��
, �0 =

E

2�1 + ��
.

Informal comparisons showed that the model results were
quite insensitive to the choice of Poisson ratio. Because pro-
teins tend toward behaving incompressibly in their elasticity,
an only slightly compressible Poisson ratio of �=0.4 is cho-
sen here for all simulations. As can be seen from the defini-
tions earlier, because the simulation is displacement con-
trolled, the Young’s modulus acts effectively as a simple
proportionality factor for the stress response of the material
�and hence also for the force response of the entire shell�.
Therefore, simulation results can be normalized by E, avoid-
ing the need for running a series of simulations over a range
of values.

Parametric studies of geometric and constitutive effects
are described in the following section. As a representative
example, consider a simulation of CCMV with the nominal
dimensions from Fig. 1 �outer radius of 13.2 nm and a thick-
ness of 2.8 nm�, described by the nonlinear Hookean model,
indented by a hemispherical rigid AFM tip of radius 14 nm.
For a capsid with Young’s modulus of E=250 MPa �on the
order of what is expected for typical protein material �22��,
Fig. 3 shows a sequence of deformed capsid shapes, color
coded by von Mises stress �23� at several intervals during the
indentation process.

Figure 3 shows that as AFM indentation increases during
the simulation, elastic stresses build and are distributed
through the thickness of the capsid wall �as indicated by the
contours of von Mises stress�. At the outset, the stress is
highest at and around the point of contact between the AFM

FIG. 2. �Color online� Finite-element meshes of CCMV �left�
and �29 �right� capsids. Dimensions of the capsids are shown in
Fig. 1. The AFM tip is modeled as a rigid hemispherical shell with
R=14 nm, and the substrate as a rigid flat plate. �Capsids are shown
not on the same scale.�
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tip and the top of the capsid, and is more uniformly distrib-
uted through the thickness away from the contact region. As
the substrate displacement continues, the stress is increas-
ingly concentrated on the inside surface of the capsid. In
general at later stages in the indentation, the von Mises stress
decreases in magnitude through the thickness, taking its low-
est value at the center of the capsid wall, consistent with the
interpretation that bending becomes a more dominant load-
carrying mechanism. For this and all other CCMV simula-
tions, indentation is carried forward until the substrate
displacement reaches 30% of the capsid diameter, approxi-
mately the point of failure in experiments �7�. At this point in
this representative simulation, the largest von Mises stress is
about 90 MPa and the maximum magnitude of the principal
strains is about 15%, clearly outside the expected range of
applicability of small-strain linear elasticity. Since many ma-
terials have ultimate strengths that are in the range of 1–10%
of their Young’s moduli �22�, the maximum stress of 90 Mpa
far exceeds this rule of thumb for indicating failure. This
suggests the capsid is qualitatively similar to rubber materi-
als, which typically have higher ultimate strengths and lower
Young’s moduli.

Given the magnitude of strains, along with the significant
changes in contact geometry throughout the simulation de-
picted in Fig. 3, it is somewhat surprising that the corre-
sponding force-indentation curve, shown in Fig. 4, exhibits
only very subtle nonlinearity. For very small displacements
of the substrate, there is a noticeable positive curvature in the
force response. This corresponds to the initial part of the
indentation, where deformation gradually spreads through
the thickness of the shell as the contact area between tip and
capsid grows. In the limit of infinitesimally small deforma-
tions, this should lead to a Hertz-like contact force scaling,
which from linear elasticity is expected to take the form F
�d3/2 �10,11�, where F is the total contact force and d is the
indentation or change in capsid height. This expected scaling
is consistent with initial convexity of the simulated force
response.

At larger indentations, the curve becomes remarkably lin-
ear over a large range, before eventually softening around
d�7–8 nm as bending deformations of the shell become
more severe. It is in this range in the simulation that the
contact pressure near the center of the AFM tip contact re-
gion begins to decrease to the point where eventually full
contact is lost and a gap opens between the AFM tip and the
apex of the capsid. The contact region is from then on de-
fined by a circular ring. Figure 5�a� shows a close-up side
view of the AFM tip and the top of the capsid illustrating the
separation of the capsid away from the AFM tip. Figure 5�b�
shows the contact pressure between the AFM tip and capsid
surfaces at indentations of d�8 and �9 nm, just after the
capsid and AFM tip separate. The blue area �dark gray in
print version� in the center of the top portion of the capsid
represents zero contact pressure, and the circular ring area
where the AFM tip and capsid are still in contact can clearly
be seen. Zero contact pressure is indicative of a loss of con-
tact several nanometers before the separation �seen in Fig.
5�a�� is visible. The inner gray region in Fig. 5�a� is the area
of the two surfaces that are no longer in contact. This sepa-
ration of the capsid apex from the AFM tip geometrically
resembles the so-called “snap-through” buckling of arches
and thin shells �10,24�. This nonlinear contact effect is not to
be confused with a geometric instability or equilibrium bi-
furcation, which would be marked by a drop in the force-
indentation curve. However, the softening of the force-
indentation curve is qualitatively similar to snap-through
behavior, and consistent with a transition of the primary
load-bearing mechanism from stretching to bending of the
shell surface. The absence of a drop in force for this revers-
ibly elastic model perhaps suggests that the failure experi-
mentally observed by �7� may be related to instability in the
constitutive response of the protein material.

A. Parametric studies

1. Constitutive laws

As shown in the previous section, AFM indentation is
capable of inducing significant strains in a capsid shell. The
experimentally demonstrated fact that CCMV capsids remain

FIG. 3. �Color online� Indentation of spherical model of CCMV
with dimensions from Fig. 1, and a nonlinear Hookean constitutive
response described by Eq. �2� with E=250 MPa and �=0.4. De-
formed capsid shapes are shown for several values of substrate
displacement. Color contours indicate the von Mises stress.

FIG. 4. Force response for indentation of spherical CCMV
model from Fig. 3.
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elastic despite such deformations puts them in a very special
class of materials. Phenomenological constitutive theory for
large-strain nonlinear-elastic materials has traditionally fo-
cused on the response of rubberlike materials. Two of the
lower-order theories for rubberlike materials, the neo-
Hookean and Mooney-Rivlin models, are employed here to
get a sense of how important constitutive details are relative
to geometric nonlinearities in determining the overall shape
of the force-indentation curve. Figure 6 compares force-
indentation responses for capsids modeled with linear
Hookean, nonlinear Hookean, neo-Hookean, and Mooney-
Rivlin models. The parameters for all of these simulations
are identical to those of the representative CCMV model
above, with the dimensions of the shell taken from Fig. 1, a
Poisson’s ratio of �=0.4, and an initial Young’s modulus of
E=250 MPa. The coefficients of the three-parameter
Mooney-Rivlin model are determined by specifying the frac-
tion C10/C01 in addition to E and �. Three values of this
fraction are considered, such that the first invariant is
weighted respectively less than, the same as, and more than
the second invariant. Figure 6 clearly demonstrates that the
force-indentation curves for the nonlinear Hookean, neo-
Hookean, and Mooney-Rivlin models �all of which employ
nonlinear kinematics� are all roughly linear and practically
coincident throughout the entire deformation. However, the
completely linearized Hookean model, corresponding to Eq.
�1�, produces a noticeably nonlinear force-indentation curve
that stiffens progressively relative to the large-deformation
models. This stiffening is directly attributable to the devel-
opment of spurious stresses from large displacements and
rotations of the shell material at larger indentations. This
clarifies that the details of the constitutive response are not
centrally important to the shape of the force-indentation
curve, provided that large displacements and rotations are

properly accounted for by the strain measure. It suggests
rather that the geometry and kinematics of the shell, and the
geometry of loading are more influential in determining the
indentation response. Apparently, despite the presence of
ratherlarge displacements and strains, constitutive nonlineari-
ties are masked from the overall structural response. This is
likely due to the fact that the strains over much of the capsid
are significantly smaller than the maximum value, such that
locally even the nonlinear models are in the linear response
regime.

FIG. 5. �Color online� At
higher deformations, the apex of
the CCMV capsid is observed to
separate from the indenting AFM
tip. Separation is preceded by a
drop in contact pressure near the
apex.

FIG. 6. �Color online� Sensitivity to constitutive law. Contact
force curves for linear and nonlinear Hookean, compressible Neo-
Hookean, and compressible Mooney-Rivlin models. Models incor-
porating nonlinear strains are nearly coincident and differ signifi-
cantly from the fully linear Hookean model. Representative capsid
dimensions from Fig. 1 are used.
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2. AFM tip size

In the experiments of �6,7� capsids rest on a flat substrate
and are compressed by an AFM tip which is roughly hemi-
spherical. The AFM tip radius is on the order of the outer
radius of the CCMV capsid, but exact determination of the
dimensions is difficult. Hence there is a need to determine
the importance of the modeled AFM tip size on the resulting
contact behavior. Simulations were performed varying the
AFM tip radius from one-quarter of its nominal size �14 nm�
to infinite �treating the AFM tip as a second flat plate�, and
the resulting contact-force curves are compared in Fig. 7. At
displacements of 7–8 nm, when failure is experimentally ob-
served, the contact force varies by �15%. When approach-
ing either extreme in the size of the AFM tip, be it of infinite
radius �a flat plate� or nearing a point load �one-quarter of the
initial radius�, the results change only slightly. Also notable
is the subtle change in shape of the force-indentation curve
as the tip radius is changed. Softening of the force response,
noted earlier to occur along with a separation of the capsid
apex from the tip, is accentuated by smaller tips which in-
duce more bending deformation in the capsid. Indeed, over
the range of deformation simulated, this softening is com-
pletely absent when the tip is modeled as a flat plate. In this
case bending deformations near the apices is limited and the
slope of the force-indentation curve is monotonically in-
creasing.

3. Capsid thickness

As noted earlier, the Young’s modulus E acts as a simple
proportionality factor for stress and force responses to inden-
tation, allowing for simple renormalization of the force-
indentation response to eliminate dependence on E. The
same cannot be said for the scaling with capsid thickness t.
Figure 8 clearly shows the change in behavior as the thick-
ness of the capsid is varied, while holding the average radius
constant at 11.8 nm. Because nonlinear geometric effects are
included in the finite element model, it is difficult to predict
analytically the precise scaling with thickness. Roughly,

thickness scaling should follow that of linearized thin-shell
theory �10,11�. To obtain this scaling, following Landau and
Lifshitz �11� the total potential energy of a shell with thick-
ness t and radius of curvature of the shell R is taken as the
sum of bending energy, which scales as Et3d2 /�2, and
stretching energy, which scales as Et�d /R�2�2, where d is the
deflection of the shell and � is the characteristic size of the
deformed area of the shell. The size � of the deformed region
can be found by minimizing the sum of the two energy
terms. This leads to the relation ���tR, which implies a
total energy of �Et2d2 /R. The force-deflection relationship
is obtained by equating the total energy to the work done by
the external force F and varying the result with respect to the
deflection d, yielding F�Et2d /R. In general the force-
deflection proportionality factor is a function of the loading
and boundary conditions of the problem. For the present ap-
plication, Fig. 8 �bottom panel� plots the contact force, nor-
malized by Et2, versus indentation, normalized by CCMV’s
average radius R. Even though this model considers geomet-
ric nonlinearities, the curves for different thicknesses nearly
collapse to the linearized scaling, with an average propor-
tionality factor of 0.8, i.e.,

FIG. 7. �Color online� Contact-force comparison for several
AFM tip sizes. Representative capsid dimensions from Fig. 1 are
used in combination with the same nonlinear Hookean constitutive
description as in Fig. 3.

FIG. 8. �Color online� Contact-force response of CCMV over a
range of capsid thicknesses. �Top� Force vs AFM plate displace-
ment for E=250 MPa and Rav=11.8 nm. �Bottom� Dimensionless
renormalization of force response according to expected scaling
from linearized thin-shell elasticity.
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F � 0.8
Et2

R
d .

Assuming a nominal thickness of t=2.8 nm and average ra-
dius of R=11.8 nm for CCMV, the Young’s modulus can be
estimated by relating the experimentally measured spring
constant of the capsid to the approximate theoretical spring
constant of 0.8Et2 /R. In this way, the Young’s modulus is
calculated to be 280 MPa for the empty wild-type capsids
and 360 MPa for the empty subE mutant capsids. Notably,
these modulus values are similar to those of soft plastics,
such as Teflon, and are slightly smaller than characteristic
values for single proteins as measured in single-molecule
experiments �22�. This is consistent with the notion that
much of the local deformation of actual capsids may be sus-
tained in the regions between protein subunits, such that the
overall stiffness of the capsid structure is less than that of the
individual proteins. It is noted that the proportionality factor
0.8 is slightly lower than the factor 1.0 computed in �7�, and
the present modulus estimates are roughly a factor of 2 larger
than the corresponding estimates in �7�. These differences are
due simply to the use here of revised estimates for the effec-
tive geometric dimensions of CCMV, as shown in Fig. 1.

The renormalized plot in Fig. 8 �bottom panel� also re-
veals more clearly how deviations from linearity in the force
response depend on shell thickness. For larger thicknesses,
the stiffening Hertz-like response near the origin is more
pronounced, while for smaller thicknesses softening of the
force response at larger indentations is more prominent. The
mechanisms for both of these nonlinear effects are related to
changes in the geometry of contact between the AFM tip and
the capsid shell, which are primarily controlled by the ease
with which the shell can be bent to accommodate the
rounded tip. Notably, for thicknesses near the average physi-
cal thickness of the CCMV capsid �2.8 nm�, these two non-
linear effects �one stiffening and the other softening� seem to
balance each other out resulting in a nearly linear response. It
is perhaps reasonable to conjecture that these mechanisms
have roles in producing the linearity observed experimentally
for the actual capsid.

IV. NANOINDENTATION OF �29

A model assembly similar to that applied to CCMV above
has been employed to simulate indentation of �29, mimick-
ing the experiments of �6�. As the same experimental setup
was involved in experiments on both capsids, here the AFM
tip geometry is again modeled as hemispherical with a radius
of 14 nm. However, �29 has a significantly larger capsid
than CCMV, by a factor of 2 in diameter. Hence, the same
14 nm AFM tip is smaller relative to �29. In addition, the
nominal thickness of the �29 capsid relative to its average
radius is much smaller than that of CCMV �by a factor of 4�.
Recalling that softening of the force response for CCMV was
accentuated by both smaller tip size and smaller shell thick-
ness, it is not surprising to see in Fig. 9 that the simulated
force-indentation response of �29 exhibits more significant
softening at moderate to large indentations over a range of
modeled thicknesses. The response of �29 adheres reason-

ably well to the linearized scaling, however the shell-
thickness-related softening nonlinearity appears more pro-
nounced than for CCMV.

From Fig. 1 the nominal capsid thickness t=1.6 nm, and a
nominal radius �chosen to be the average value between the
smaller and larger radii, R=23.2 nm� are chosen such that an
estimate of the linearized proportionality factor, and capsid
Young’s modulus can be made. From Fig. 9, for a wide range
of thicknesses, a good estimate of the average proportionality
factor is 0.6. Thus, from the experimentally determined
spring constant of the �29 capsid, the Young’s modulus is
estimated to be E=4.5 GPa.

As seen in the sequence of deformed shapes in Fig. 10,
the progression of the von Mises stress is localized to the
upper and lower regions of the capsid, which undergo the
highest deformation. However, the upper region of the capsid
develops stress much more quickly, and with a higher mag-

FIG. 9. �Color online� Contact-force response of �29 over a
range of thicknesses, showing the dimensionless renormalization of
the force according to expected scaling from linear elasticity. The
average of the two principal radii �R=23.2 nm� is used to scale the
plate displacement.

FIG. 10. �Color online� Indentation of ellipsocylindrical model
of �29 with dimensions from Fig. 1, E=1.5 GPa, and �=0.4. De-
formed capsid shapes are shown for several values of substrate
displacement. Color contours indicate the von Mises stress.
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nitude. Due to the lack of axisymmetry of the capsid about
the indentation axis, there is a region away from the region
of contact with the AFM tip where the stress begins to be
prominent at d�17 nm: the inner surface of the upper por-
tion of the capsid nearest to the center. However, this only
occurs at displacements in the simulation that exceed the
displacements at which failure occured experimentally. At
the point when drops in the force are seen experimentally,
d�12 nm, the highest stresses in the simulated capsid are
�760 MPa for E=4.5 GPa. This is on par with the ultimate
strength of typical protiens �22�, suggesting that breakage of
the capsid could very well be the cause of failure in experi-
ments. The highest strain in the capsid is �11% at d
�12 nm, and occurs on the inner surface of the capsid di-
rectly under the AFM tip. However, unlike the CCMV simu-
lations, no separation of the capsid away from the AFM tip is
observed.

V. DISCUSSION

A core objective of this work has been to illuminate some
of the mechanisms responsible for the linear force-
indentation responses measured for the capsids of viruses
CCMV and �29. The acknowledgment that these nanoscale
structures act as elastic shells prompts the question of how
similar they are mechanically to macroscopic shells, which
are modeled well by continuum elasticity theory. It is not
clear how to answer this question directly given that a con-
cise quantitative theoretical description of the local mechan-
ics of the individual constituent capsid proteins and their
interactions is currently out of reach. In the absence of such
detailed constitutive understanding, experminents such as
those performed with atomic force microscopy �6,7� provide
a coarse-grained probe to measure the global structural re-
sponse of capsid shells. The continuum modeling in this
work serves as a convenient coarse-grained theoretical
complement, partially clarifying what features of the ob-
served experimental results are generic for shells, and what
features require detailed constitutive knowledge for explana-
tion.

The results here demonstrate that the generally nonlinear
shape of the force-indentation response for a homogeneous
spherical shell is affected significantly by the dimensions of
the indentor and the shell itself. In particular, stiffening at
low force or indentation, similar to Hertz response for solid
bodies in contact, is characteristic of the indentation response
for thicker shells with dimensions like the CCMV capsid.
Small AFM tips and small capsid thicknesses both facilitate
bending deformation, which generally softens the structure at
higher indentations. Large tip sizes and shell thicknesses can
have the opposite effect, leading to further stiffening of the
force response at larger indentations. This later effect was
revealed in recent finite-element modeling of the effect of
maturation on the murine leukemia virus by Kol et al. �25�.
In this work, force-indentation curves were computed for
both the mature capsid, having a thickness similar to that of
CCMV, and the immature capsid, which is significantly
thicker. The force-indentation curve for the immature virus
with a thick shell shows much more pronounced nonlinear-

ity, in accordance with the expected Hertzian scaling for
thicker shells.

Consideration of nonlinearites in modeling capsid nanoin-
dentation has an impact on the interpretation of experie-
ments. Previous linearized elasticity models constructed by
�6� estimated a Young’s modulus for �29 of 1.8 GPa. This
result appears mainly to be a function of two things: a pro-
portionality factor found analytically for a spherical shell
with point loads applied at the top and bottom, and a finite-
element model also designed with a point load force with the
capsid modeled as a geodesic ellipsoid. Together, these fac-
tors lead to an estimate of the Young’s modulus which is
smaller than that of the present model. Though the results are
not shown here, when the present model is modified by rep-
resenting the capsid and AFM tip as a linearly elastic geode-
sic ellipsoid indented by a point load, the results of �6� are
recovered. This further illustrates the relative sensitivity of
the elasticity model to geometric details. However, both the
previously reported value and the value reported here show
the �29 capsid to have a stiffness in the range of 1–5 GPa.

The continuum shell models presented here may also help
to explain how the linearity of the experimentally measured
force-indentation responses of �29 �6� and CCMV �7� can
persist despite the pervasiveness of nonlinearity in the sys-
tem. The dimensions of the AFM tips and capsids in recent
experiements on CCMV are in a range in which the nonlin-
ear stiffening and softening effects seem to balance each
other so that the modeled elastic force-indentation response
is close to linear. This result suggests that similar experi-
ments done with AFM tips or capsids of other dimensions
might reveal force-indentation responses which are nonlin-
ear even in the elastic regime. However, though the mea-
sured response of �29, which has significantly different di-
mensions from CCMV, is also linear, the continuum models
here still show noticeable nonlinearity. This may indicate a
deficiency of the present continuum model that could per-
haps be remedied by a more accurate representation of the
geometry of the �29. Alternatively, the model could be im-
proved with a more informed choice of constitutive law, al-
though the constitutive models employed here, which are
capable of significant nonlinearities, did not significantly af-
fect capsid shell response.

One clear weakness of the isotropic, homogeneous, geo-
metrically simple model is that it does not produce drops in
contact force that are experimentally observed at �20–30%
deformation. These drops are signs of failure of capsid struc-
ture, which in general could be triggered by geometric insta-
bility �buckling� or local failure of the material �e.g., bond
breaking�. Over the relevant range of dimensions, the models
in this work did not exhibit any geometric instabilities. How-
ever, the present model does not take into account any of the
geometric complexities present in the molecular structure;
although spherical in an average sense, the CCMV capsid is
faceted into distinct regions of pentamers and hexamers and
there are specific and finite points where the subunits are
joined through chemical bonding. The same is true for �29.
These geometric inhomogeneities could change the force-
indentation characteristics of the structure. Also, the present
model neglects the effects of “prestressing” consistent with
the hypothesis of Lidmar et al. �9� that the icosahedral ver-
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tices of spherical capsids act as disclinations in an otherwise
hexagonal protein lattice. The importance of icosahedral
symmetry is also emphasized by a recent study performed by
Zandi and Reguera �26�, in which the stress distributions on
icosahedral structures are predicted to vary from homoge-
neous in T=1 structures to extremely nonuniform with high
stress concentrations at the pentamer sites for high T num-
bers. Also, based on the fivefold icosahedral disclination hy-
pothesis of Lidmar et al. �9�, the recent coarse-grained mo-
lecular dynamics simulations by Vliegenthart and Gompper
�27� and the thin-shell finite element modeling by Klug et al.
�28� reveal that buckling, marked by force drops, is indeed
possible during capsid indentation. The results in �27� also
suggest that “size effects” may be important for smaller
capsids, causing their force-indentation character to differ
from that predicted by continuum mechanics, and further-
more that the orientation of an icosahedral shell relative to
the indentation axis can also affect the force-indentation sig-
nature. Orientation effects were also examined in the recent
AFM study by Carrasco et al. �29� of theT=1 minute virus of
mice �MVM�. Though no significant dependence was ob-
servable for empty MVM capsids, the measured stiffness of
DNA-filled MVM capsids showed strong orientation depen-
dence when indented along the five-, three-, and twofold
symmetry axes. Icosahedral shell finite-element modeling re-
sults suggested that anisotropic structural reinforcement by
the DNA is responsible.

It is arguable that for the particular viruses studied, the
effect of icosahedral capsid structure will be relatively small,
and the results of the continuum model are indeed reason-
able. CCMV is a T=3 structure, and �29 has T=3 end caps.
As noted by Lidmar et al. �9�, smaller T-number structures
are generally less faceted than larger viruses, and are thus
expected to have lower Föppl–von Kármán �FVK� number,
implying less severe prestressing at pentamer sites. The FVK
number is given as �=YR2 /�, where Y =Et is the two-
dimensional Young’s modulus, and � is the flexural rigidity.

If the 2D bending stiffness is assumed to derive from the 3D
bulk elasticity theory employed in this study, the FVK num-
ber can be expressed as �=12�1−�2��R / t�2. For CCMV with
the average geometric parameters R=11.8 nm and t
=2.8 nm this provides an estimated FVK number of �CCMV
�180. This is just barely above the “buckling” threshold
��B=154� computed by Lidmar et al. �9�, suggesting only
very subtle faceting. According to its cryo-EM structure �15�,
the icosahedral end caps of �29 appear also to be more
spherical than faceted. The recent study by Vliegenthart and
Gompper �27� showed that deviations from continuum
theory are most important for small T-number capsids with
larger FVK values. Also as shown by Klug et al. �28�, for
larger or more faceted viruses with FVK number much larger
than �B, spherical and icosahedral shell models can differ
significantly, with the prestressed pentamer sites of the icosa-
hedral shell acting like geometric defects that can lead to
geometric instability. This suggests that although stress is
concentrated at pentameric sites, this becomes important
only for viruses with large FVK numbers. It can be argued
that FVK numbers should be rather small for both CCMV
and �29 as evidenced by their less faceted geometry. Hence,
it is reasonable to expect that the inhomogeneous and aniso-
tropic character of icosahedral geometry should have mini-
mal effect on these viruses.

Because the present nonlinear elastic model did not turn
out to predict any drop in force due to geometric instability,
it may be inferred that the mechanism of failure during the
experiment is likely to be, at least in part, capsid breakage.
To test this hypothesis, a more complex model would be
needed that describes the physics of interactions between the
subunits and the more variated structure of the capsid. A
plausible scenario is that the capsid structure fails at the non-
covalent bonds between subunits. It is possible that a true
atomic model would be required to capture points of failure
nucleation/initiation.
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